
1

A Better Approach to Reliable Multi-Path
Provisioning

Ananya Das, Charles Martel, Biswanath Mukherjee, and Smita Rai
Department of Computer Science, University of California, Davis, CA 95616

Email: {das, martel, mukherje, rai}@cs.ucdavis.edu

Abstract—We study the problem of reliably provisioning traffic
in high-capacity backbone mesh networks supporting virtual
concatenation (VCAT). VCAT enables a connection to be inversely
multiplexed on to multiple paths, a feature that has many ad-
vantages over conventional single-path provisioning. We propose
improved routing algorithms which use minimum-cost flow to
find efficient collections of paths that satisfy the traffic requests.

We first investigate the performance of our scheme under a
uniform setting with symmetric traffic distribution and equal link
capacities. We then apply our algorithm in a more realistic setting
with asymmetric traffic and differing link capacities. Results
show that our algorithm is an attractive approach in both the
uniform and non-uniform settings, and much more effective than
previously proposed schemes. The improvement of our algorithm
over previous work in the non-uniform setting is particularly
significant. This indicates that our algorithm would be much
more useful if applied in practice.

I. INTRODUCTION

With the rise of critical Internet applications, satisfying
customer reliability requirements is becoming increasingly im-
portant. A common quality of service (QoS) metric is service
reliability. Reliability is measured by connection availability -
the probability that a connection will be found in the operating
state at a random time [5]. Various routing schemes have
been proposed that maintain reliability by handling failures.
One approach is path protection [3], [11], in which backup
routing paths are reserved during connection setup to cope
with failures in the primary paths. The drawback to protection
schemes is that they require additional network resources and
therefore an extra cost for the network operator. Another
approach is restoration [9], [11], in which backup paths are
discovered dynamically after a link failure. However, since
recovery must be performed after the failure has occurred,
restoration schemes take more time than protection schemes.

Previous researchers have considered satisfying cus-
tomer availability requirements using single path rout-
ing schemes [14]. Next-generation networks, such as NG-
SONET/SDH, supporting virtual concatenation (VCAT) [6] al-
low connections to be provisioned on multiple paths. Multi-
path routing has the obvious advantage of better fault tol-
erance. It provides more effective utilization of network re-
sources, and relieves link congestion and delay. An offline
multi-path routing scheme has been proposed to handle net-
work traffic in mesh networks [2]. Although the approach is
called “dynamic”, all routing computation is done offline, and
a database of routing information is indexed at call set-up

This work has been supported by NSF Grant No. CNS-05-20190.

time. However, since this offline schemes fails to fully adapt
to changing network conditions, it may not be very practical.

Since many decisions for network management must be
made in real time, efficient online schemes are essential. In
the online reliable QoS provisioning problem that we study, a
series of bandwidth requests are issued dynamically and each
request must be scheduled as it arrives. Once a request has
been scheduled, it cannot be rerouted. If a request cannot be
satisfied, it is rejected. The authors of [10] studied this problem
for high-capacity backbone mesh networks with possible link
failures. They proposed a new metric, effective bandwidth, to
measure the expected amount of available bandwidth provi-
sioned for a connection over multiple paths.

We propose a new multi-path heuristic that solves this
problem and significantly improves on the results from [10].
Our algorithm uses the minimum-cost flow in a network to
find an efficient collection of paths that meets the bandwidth
request. This method allows us to preserve network capacity
by consuming as little bandwidth as possible to satisfy a
request. We also present an improved version of this algorithm
which more effectively utilizes network bandwidth by limiting
the overuse of any particular link. This technique also helps
to reduce link congestion.

We first investigate the performance of our schemes under a
uniform setting with symmetric traffic distribution and equal
link capacities. We then extend our study to a non-uniform
setting with asymmetric traffic and differing link capacities.
The latter results give us a better understanding of how the al-
gorithms perform in practice. Non-uniformity has been studied
for computational grids [7], communication networks [8], [13],
and storage networks [12]. However, to our knowledge, ours
is the first paper to study non-uniformity for availability-aware
multi-path routing.

Our simulation results show that by finding better sets
of paths that preserve network capacity, our algorithm is
highly successful. For a typical US nationwide topology with
realistic and asymmetric traffic distribution, under a heavy
load of 400 Erlangs, our algorithm can schedule 99.9% of the
requests and 99.7% of the requested bandwidth. Our algorithm
also performs significantly better than prior schemes in both
uniform and non-uniform settings. However, the difference
in improvement in the non-uniform setting is substantial,
indicating that our approach would be much more effective
for practical networks.

Our algorithm is applicable in settings in which degraded
service is accepted. In other words, in these settings, the cus-

2

tomer is willing to accept a small chance or period of time of
failure. Unlike our algorithms, full-protection approaches take
measures to guarantee against connection failures. However,
this assurance comes at a cost. To understand the cost of
full protection on performance, we compared our algorithms
to the full protection approach proposed in [?]. Although
our approach does not provide full protection, our simulation
results show that it performs significantly better than the full
protection scheme. These results verify that there exists a
significant trade-off between full protection and performance
and if a customer is willing to accept a small chance of failure,
then using our approach would be beneficial.

The remainder of this paper is organized as follows: Sec-
tion II describes the QoS problem we are investigating. Sec-
tion III presents our multi-path routing algorithms. Section IV
provides our illustrative results. Finally, Section V presents
our conclusions.

II. THE MAXIMUM BANDWIDTH PROBLEM

The reliable multi-path provisioning problem is modeled
in [10] as the MAXBAND problem. The goal is to establish
a connection between two nodes s and d, and send b units1

of effective bandwidth from s to d. For a path P , with k
edges2, e1, e2, . . . , ek, if the respective availabilities of these
edges are a1, a2, . . . , ak, then the availability of the path is
A = a1 ·a2 · . . . ·ak. Assuming that all links fail independently,
A is the probability that P is properly functioning. If the
respective capacities on the edges of P are c1, c2, . . . , ck,
then the effective bandwidth of P is A·cmin, where cmin =
min1≤i≤k(ci). Given a set of paths π = P1, P2, . . . , Pm

with respective availabilities A1, A2, . . . , Am, if b1, b2, . . . , bm

units of bandwidth are sent along these paths, then the total
effective bandwidth of π is

∑m
i=1 Ai·bi.

The MAXBAND problem takes as input a directed graph G =
(V, E), where each edge in E has an availability a ∈ (0, 1)
and a non-negative integer capacity; and a connection request
(<s, d, b>), where s, d ∈ V , s is the source node, d is the
destination node, and b is the effective bandwidth requirement.
The MAXBAND problem is to find a set of paths from s to d
such that the effective bandwidth from s to d is ≥ b, while
maintaining ci ≥ 0 for all e ∈ E.

Since even the off-line version of MAXBAND is NP-hard,
efficient heuristics are needed to solve this problem. The
MAXFLOW heuristic was developed and tested in [10]. The
algorithm first finds a set of candidate “good” edges. Among
these edges, it then iteratively seeks the path of highest avail-
ability until the set of paths found provides enough effective
bandwidth or until no more paths can be found. MAXFLOW
outputs a set of paths that satisfies the effective bandwidth
request if it finds such a set; otherwise the request is rejected
and no paths are assigned. The experimental network used was
a US nationwide network topology which resembles a well-
connected carrier’s backbone topology [15] (see Fig. 1). The
links were bidirectional and link availabilities were uniformly

1One unit of bandwidth in a SONET-based network is STS-1 (≈ 51.84
Mbps).

2In this paper, we use the terms edge and link interchangeably.

Fig. 1. Sample network topology.

Fig. 2. Example of MAXFLOW scheme.

distributed over the values [0.9999, 0.99999, 0.999999]. Since
link availabilities are less than 1, all path availabilities will
also be less than 1. Therefore, to satisfy an effective bandwidth
request of b units, it is always necessary to consume at least
b + 1 units (we will show in Section II-A that in this setting,
exactly b + 1 units will be sufficient).

Figure 2 shows an example of MAXFLOW’s approach. Edges
on the graph that have a non-zero flow are indicated by
dashed lines and the flow amounts are shown below the edges.
The capacity on all the edges is 10 and the availabilities on
all edges except (s,a) and (s,b) is 0.999999. Edge (s,a) has
availability 0.99999 and edge (s,b) has availability 0.9999.
For this example, suppose the request (<s, d, 11>), has been
issued3. MAXFLOW will first choose the path with highest
availability, s-c-g-h-d, even though it is the longest path. It will
send 10 units of flow along this path. In the next iteration, it
will choose path s-a-f-d. Since the availability of these paths
is less than 1, a request for 11 units of effective bandwidth
would require at least 12 units of total bandwidth (we will
later show that one additional unit of bandwidth is sufficient
in most practical scenarios). Therefore, MAXFLOW would send
2 units of flow along s-a-f-d. Clearly, this is not the ideal set
of paths, since the request can be satisfied without using the
longest path.

We found two drawbacks with the MAXFLOW heuristic.
First, the maximum availability path is not always the shortest
path4. Using the shortest path that satisfies the bandwidth

3Assume that bandwidth need is deterministic so that all the bandwidth on
a link can be used as in a time-division multiplexing (TDM) link.

4The length of a path is the number of edges in the path.

3

request usually allows us to consume the minimum amount of
network bandwidth required to satisfy the request. Therefore,
if a shorter path (which is slightly less reliable) provides
enough bandwidth for the given request, it should be used over
a longer path with higher availability. Second, the MAXFLOW
algorithm does not take full advantage of the multi-path
feature. In many cases, although the maximum availability
path may be the best single path, it may not be part of a
set of the best multiple paths.

We propose a new heuristic to address the MAXBAND
problem. Our algorithm, MINCOST, takes advantage of the fact
that using shorter paths to satisfy each request will reduce
the amount of bandwidth consumed from the network (see
Figure 3). It also exploits the use of multi-paths by finding
the set of globally optimum paths that satisfies the current
bandwidth request.

A. The Effect of Fractional Path Availabilities

While the MAXFLOW algorithm seeks the highest availabil-
ity path, our algorithm initially ignores the path availabilities
and aims to find the shortest paths that can satisfy the requests.
Given the network settings used in [10] (which are similar to
realistic observed settings), this approach of not prioritizing
availabilities maintains practicality. In our experimental runs
using the same topology, we found that the average path
length was 3. A path of length 3, with each link having the
lowest possible availability, would have an overall availability
of 0.9999×0.9999×0.9999= 0.9997, which is still close to 1.
For the settings used in [10], we find that b+1 units is always
enough to satisfy a request for b units of effective bandwidth5.
For example, if 96 units of bandwidth are requested, and a
path with availability 0.9997 is found, then by retrieving 97
units of bandwidth from this path we will obtain an effective
bandwidth of 97×0.9997 = 96.9709, which is more than
enough to satisfy the request. The high link availabilities and
the short path lengths that are characteristic of the network
topology generally allow for paths with high availabilities.
MAXFLOW’s approach of finding highly reliable paths to deal
with bandwidth loss incurred from fractional availabilities is
rather unnecessary and can be avoided by simply retrieving an
additional unit of bandwidth.

III. THE MINCOST ALGORITHM

Given a connection request, the MINCOST algorithm finds a
set of paths that will result in the minimum overall bandwidth
consumption from the network. The algorithm first sets the
cost of each edge in the underlying graph G to 1. If edges
e1, e2, . . . , ek with costs w1, w2, . . . , wk are assigned new
flows f1, f2, . . . , fk, then the cost of this flow is

∑k
i=1wi·fi.

Given a connection request <s, d, b>, the MINCOST algorithm
finds the set of paths that forms the minimum cost flow from
s to d of value b + 1. As noted earlier, a flow of b + 1 will
satisfy this request. By finding the minimum cost flow, we are

5The maximum amount of bandwidth requested is 96 units. Therefore, as
long as the path length is less than k = log(0.9999)

96
97

= 104, b + 1 units
will be sufficient to satisfy a request for b units.

Fig. 3. Example of MINCOST scheme.

able to minimize the sum of the flows in all the edges used
for this request [1].

Figure 3 shows MINCOST’s approach for the previous ex-
ample. Assume the same link availabilities and capacities, and
that the same request (<s, d, 11>) has been issued as in Fig. 2.
The MINCOST algorithm sends 10 units of flow along path s-a-
e-d, and 2 units along path s-b-f-d. Although both MAXFLOW
and MINCOST are able to satisfy the request, MINCOST does
so by consuming 10×3+2×3=36 units of bandwidth whereas
MAXFLOW consumes 4×10+2×3=46 units.

Note that in the same example, if a request for slightly
higher bandwidth, for example 22 units, had been issued
instead, MINCOST would satisfy it by sending 10 units along
path s-a-e-d, 10 units along path s-b-f-d and 2 units along path
s-c-g-h-d. However, MAXFLOW would reject this request.

Algorithm 1. MINCOST(< s, d, b >, G = (V, E), C : E → Z+, A :
E → (0, 1))

1: Assign each edge e ∈ E a cost w(e) = 1.
2: Find the set of paths, π, that makes up the minimum cost

flow from s to d of value b + 1.
3: if Such a set exists then
4: Reduce the capacity of every link in π by its new flow.

Provisioning Successful.
5: else
6: Reject this request.
7: end if

The steps of our algorithm are shown in Algorithm 1.
Our approach can be implemented efficiently using a simple
minimum-cost flow algorithm [1], and in our simulations the
average number of paths needed was only 1.2.

Our algorithm requires a bit more computation than
MAXFLOW. However, our simulation6 results show that even
without any code optimizations, both algorithms take only
a few milliseconds to process a request. The difference in
computation time is a small tradeoff for the performance
improvements achieved by MINCOST.

6Our simulations were run on a personal computer with a 1.7-GHz Pentium
M processor and 2GB of RAM.

4

Fig. 4. Subgraph of sample topology.

A. The MINCOSTADD Algorithm

Congestion is a common problem that arises when a series
of network requests is issued. Edges which lie on the shortest
paths for many node pairs are likely to be accessed frequently.
To avoid congestion, the use of these edges should be limited.
For example, Fig. 4 shows a subgraph of the topology used
in this study. In this example, edge (6, 11) lies on the shortest
path between several node pairs such as: 1 and 12, 1 and 19,
and 1 and 20. In general, popular edges like (6, 11) should be
saved when it is still possible to efficiently (i.e., without using
significantly more edges) satisfy a request with a less popular
edge. If a request between nodes 1 and 12 was issued, then
to preserve bandwidth on edge (6, 11), path 1-6-9-12 should
be chosen over the path containing edge (6, 11).

Congestion also occurs when certain nodes are requested
more frequently than others. The bandwidth on the edges
adjacent to these nodes diminishes faster than on other edges.
Clearly, we can imagine realistic situations in which this would
occur: in a network of U.S. cities, a link connecting two
major cities, such as New York and Boston, is likely to be
accessed more frequently than a link connecting two small
cities. Suppose there are multiple paths that connect two small
cities A and B, but one of these paths contains an edge e that
connects New York to Boston. If a request from A to B is
made, we should avoid using edge e to satisfy this request.

This idea of preserving frequently accessed edges was our
motivation for modifying the MINCOST algorithm. In the
modified algorithm, MINCOSTADD, each time an edge is used,
we increase its cost. Therefore, popular edges will have higher
costs and will be accessed less frequently. They will be used
mainly for situations in which they are crucial for efficiently
satisfying a request. This modification produces improved
performance results with only minor additional computational
costs.

Adjusting the costs of edges allows us to easily tune the
algorithm based on the network topology and frequency of
edge accesses. For example, if we are given the topology
ahead of time, and we know that a particular edge lies on
the shortest path for many node pairs, we can limit the use
of this edge by increasing its cost. Similarly, if the network
setting is not uniform and we are aware of the popular edges,
we can relieve congestion by regulating the usage of these
edges. This feature of the MINCOSTADD algorithm makes it
both flexible and adaptive. It promotes more efficient use of
network resources by allowing us to preserve edges which are
more in demand.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

A. Uniform Setting

To evaluate the performance of our algorithms, we repli-
cated the simulated dynamic network environment used
in [10]. The connection arrival process is Poisson and the
connection-holding time follows a negative exponential dis-
tribution with unit mean. There are 16 wavelengths per link,
and the capacity of each is OC-192 (≈10 Gbps), which is a
realistic measure for today’s channel speeds. The bandwidth
distribution of the connection requests is as follows: 52%
of the requests are for 100Mb of bandwidth, 21% are for
150Mb, 10% are for 600Mb, 10% are for 1Gb, 4% are
for 2.5Gb, 2% are for 5Gb, and the final 1% of requests
are for 10Gb of bandwidth. This distribution follows typical
bandwidth distributions observed in realistic networks. In the
first set of simulations, we assume a uniform traffic distribution
over all node pairs. The availability of links were assumed
to be uniformly distributed over the values [0.9999, 0.99999,
0.999999]. We simulated 100,000 connection requests under
these settings for various load levels7. We tested each algo-
rithm while varying the load on the network from 100 Erlangs
to 600 Erlangs.

We applied the MINCOST and MINCOSTADD algorithms and
compared their performance to the MAXFLOW algorithm. We
observed the amount of unprovisioned bandwidth (bandwidth
blocking probability), the fraction of unprovisioned requests
(probability of failure), and the number of satisfied requests
before the first failure occurs.

For all load levels, MAXFLOW is outperformed by both of
our algorithms. Our algorithms consistently provision more
bandwidth, and can satisfy a higher number of requests before
the first failure, and a higher number of requests in total.
For moderate load (300 Erlangs), MINCOST and MINCOSTADD
block less than a third of the bandwidth blocked by MAXFLOW
(see Fig. 5). Both of our algorithms are also 3 times less
likely to fail than MAXFLOW (see Fig 6). Under the same load,
MINCOST satisfies more than twice the number of requests that
MAXFLOW satisfies before the first failure, and MINCOSTADD
satisfies more than 3 times this amount (see Table I). Under
a load of 200 Erlangs, our algorithms are always successful,
whereas MAXFLOW has a few failures (approximately 140).

The results illustrate the effectiveness of our algorithms.
Even under a moderate load level (300 Erlangs), our algo-
rithms satisfy more than 99.3% of the requests and more than
97% of the requested bandwidth.

To verify that the MINCOST algorithm retains more band-
width in the network than MAXFLOW, we recorded the amount
of bandwidth consumed by each algorithm to satisfy 100,000
requests under a light load (100 Erlangs)8. We found that MIN-
COST consumes approximately 30 units per request whereas
MAXFLOW consumes approximately 30.5 units, which is about
1.67% higher.

7Load, measured in Erlangs, is defined as the product of the connection-
arrival rate, the average connection-holding time, and a connection’s average
bandwidth normalized in the unit of OC-192.

8Since under this load, neither algorithm failed for 100,000 requests, this
setting made it easy to compare the amount of bandwidth consumed.

5

100 200 300 400 500 600 700

0.
0

0.
1

0.
2

0.
3

0.
4

Bandwidth Blocking Probability

Load (Erlangs)

F
ra

ct
io

n
of

 U
np

ro
vi

si
on

ed
 B

an
dw

id
th

maxflow
mincost
mincostAdd

Fig. 5. Fraction of bandwidth blocked in uniform setting.

100 200 300 400 500 600 700

0.
00

0.
05

0.
10

0.
15

0.
20

Probability of Failure

Load (Erlangs)

F
ra

ct
io

n
of

 U
np

ro
vi

si
on

ed
 R

eq
ue

st
s

maxflow
mincost
mincostAdd

Fig. 6. Fraction of requests blocked in uniform setting.

B. Non-Uniform Setting

Much of the published work in routing studies assumes
that requests are uniformly distributed among all node pairs.
In realistic networks, this assumption clearly does not hold.
Certain popular sites are more likely to be selected for a
connection request, whereas other sites will be selected less
frequently. To account for this asymmetry, network operators
are likely to supply links adjacent to the popular sites with
more bandwidth. To understand the relative performance of

Load maxflow mincost mincostadd
100 NF NF NF
200 7692 NF NF
300 4978 14120 17390
400 3919 8698 8953
500 3406 7449 7770
600 3600 6713 6957

TABLE I
NUMBER OF SUCCESSFUL REQUESTS BEFORE FIRST FAILURE IN UNIFORM

SETTING (NF INDICATES NO FAILURES).

100 200 300 400 500 600 700

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Bandwidth Blocking Probability

Load (Erlangs)

F
ra

ct
io

n
of

 U
np

ro
vi

si
on

ed
 B

an
dw

id
th

maxflow
mincostAdd

Fig. 7. Fraction of bandwidth blocked in non-uniform setting.

100 200 300 400 500 600 700

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Probability of Failure

Load (Erlangs)

F
ra

ct
io

n
of

 U
np

ro
vi

si
on

ed
 R

eq
ue

st
s

maxflow
mincostAdd

Fig. 8. Fraction of requests blocked in non-uniform setting.

MAXFLOW and our algorithms under more realistic conditions,
we ran simulations under a non-uniform setting. We used
the same network topology as in our uniform experiments.
However, in this new setting, we placed a bias on certain
nodes by forcing them to be selected more frequently for the
s-d pairs. These biased nodes are referred to as “large” nodes,
and all other nodes are referred to as “small”. We followed
the guidelines suggested by the Defense Advanced Research
Projects Agency (DARPA) [16] model and set 20% of the
nodes to be “large”. We chose the 20% of nodes with the
highest degree for this set (see Fig. 1). The remaining 80%
of nodes were “small”. Following the guidelines, the traffic
was distributed as follows: 40% of the traffic was between
two large nodes, 40% of the traffic was between a large node
and a small node, and the remaining 20% of the traffic was
between two small nodes.

Links adjacent to large nodes were assigned twice as much
bandwidth (32 wavelengths, each at ≈10 Gbps) as other links.
All other settings in the non-uniform experiments were kept
the same as for the uniform case.

6

Load maxflow mincostadd
100 NF NF
200 84186 NF
300 13667 NF
400 6467 29556
500 5569 16420
600 5923 11614

TABLE II
NUMBER OF SUCCESSFUL REQUESTS BEFORE FIRST FAILURE IN

NON-UNIFORM SETTING (NF INDICATES NO FAILURES).

Load Uniform Non-Uniform
200 200 200
300 101.48 200
400 43.40 176.17
500 19.82 63.87
600 14.00 27.50

TABLE III
PERFORMANCE GAIN MEASURED BY BANDWIDTH BLOCKING

PROBABILITY OF MINCOSTADD OVER MAXFLOW (VALUES ARE
PERCENTAGES).

Figures 7 and 8 and Table II show our results under the non-
uniform setting. For simplicity, we only compare MAXFLOW
to MINCOSTADD since the latter consistently performs better
than MINCOST (however, both of our algorithms outperform
MAXFLOW). The performance of MINCOSTADD is even more
impressive in this non-uniform setting. When the network
is considerably loaded (at 400 Erlangs), the algorithm suc-
cessfully schedules 99.9% of the requests and 99.7% of
the requested bandwidth. MINCOSTADD’s ability to adapt to
varying edge demands accounts for its effectiveness in this
setting.

Our simulation results show that in the non-uniform setting,
for all loads, MINCOSTADD performs better than MAXFLOW.
We calculated the percent difference9 in bandwidth blocking
probability and probability of failure for the two algorithms
under both settings. These values are provided in Tables III
and IV. These values show that the difference in the per-
formance gain achieved by MINCOSTADD over MAXFLOW is
considerably higher in the non-uniform setting than in the
uniform setting. In particular, when the load is at 400 or 500
Erlangs, the performance improvement, in terms of bandwidth
blocking probability, of MINCOSTADD over MAXFLOW in the
non-uniform setting is more than three times the performance
improvement in the uniform setting. In terms of probability
of failure, the performance improvement in the non-uniform

9The percent difference of two values a and b is |a−b|
average(a,b)

×100.

Load Uniform Non-Uniform
200 200 200
300 111.40 200
400 59.77 183.40
500 34.38 91.51
600 32.54 47.78

TABLE IV
PERFORMANCE GAIN MEASURED BY PROBABILITY OF FAILURE OF

MINCOSTADD OVER MAXFLOW (VALUES ARE PERCENTAGES).

setting is more than twice the performance improvement in
the uniform setting. This difference in improvement between
the two settings is crucial. It implies that studies done under
purely uniform settings may be misleading in measuring rel-
ative performance since the uniformity assumption is usually
unrealistic. Our results are more convincing as they show that
our algorithms are highly effective in both uniform and non-
uniform settings.

V. CONCLUSION

Our work presents a new online algorithm MINCOST for
reliable mutli-path routing and an improved version of this
algorithm, MINCOSTADD. Our algorithms are effective because
they take advantage of the multi-path feature and maintain
as much bandwidth as possible in the network per request.
The ability of MINCOSTADD to adapt to different network
topologies and asymmetric edge demands allows it to be
very successful especially under a non-uniform setting. For
the topology we used (which was a typical US nationwide
topology), with asymmetric traffic and link capacities, even
under a relatively heavy load (400 Erlangs), MINCOSTADD
successfully scheduled 99.9% of the requests and 99.7% of
the requested bandwidth. Results show that our MINCOSTADD
algorithm has significant performance improvements over
MAXFLOW in both uniform and non-uniform settings. This
difference is especially notable in the non-uniform setting
which indicates that MINCOSTADD would be much more
effective when used in practice.

REFERENCES

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[2] S. Bahk and M. Zarki. Dynamic Multi-path Routing and How it
Compares with other Dynamic Routing Algorithms for High Speed Wide
Area Networks. ACM Computer Communications Review, vol. 22, no.
4, pp. 53-64, Oct. 1992.

[3] A. Chakrabarti and G. Manimaran. Reliability Constrained Routing in
QoS Networks. IEEE/ACM Transactions on Networking, vol. 13, no. 3,
pp. 662-675, June 2004.

[4] H. Cheng and J. Chen. Performance of Fast Bandwidth Reservation with
Multipath Routing. IEE Proceedings - Communications, vol. 145, no. 2,
pp. 80-86, April 1998.

[5] M. Clouqueur and W. Grover. Availability Analysis of span-restorable
Mesh Networks. IEEE J. on Selected Areas in Communications, vol. 20,
no. 4, pp. 810-821, May 2002.

[6] ITU-T Recommendation. Network Node Interface for the Synchronous
Digital Hierarchy (SDH). ITU-T Recommendation G.707, December
2003.

[7] V. Iyengar, S. Tilak, N. Abu-Ghazaleh, and M. J. Lewis. Nonuniform
Information Dissemination for Dynamic Grid Resource discovery. Pro-
ceedings of IEEE NCA, pp. 97-106, 2004.

[8] E. Noel and K. Tang. Performance Modeling of Multihop Network
Subject to Uniform and Nonuniform Geometric Traffic. IEEE/ACM
Transactions on Networking, vol. 8, no. 6, pp. 763-774 Dec. 2000.

[9] S. Norden, M. Buddhikot, M. Waldvogel, and S. Suri. Routing
Bandwidth-Guaranteed Paths with Restoration in Label-Switched Net-
works. Proceedings of Computer Networks, vol. 46, no. 2, pp. 197-218,
2004.

[10] S. Rai, O. Deshpande, C. Ou, C. Martel, and B. Mukherjee. Reliable
Multi-Path Provisioning for High-Capacity Backbone Mesh Network.
IEEE/ACM Transactions on Networking. To appear, Dec. 2007.

[11] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, Survivable WDM
Mesh Networks, IEEE/OSA Journal of Lightwave Technology, vol. 21,
no. 4, pp. 870-883, April 2003.

7

[12] S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, and E. Ziskind,
A. Krishnamurthy and R. Wang. Segank: A Distributed Mobile Storage
System. Proc. 3rd Conference on File and Storage Technologies (FAST),
Mar. 2004.

[13] S. Wong, J. Lim, S. Rao, and W. Seah. Density-aware Hop-count
Localization (DHL) in Wireless Sensor Networks with Variable Density.
IEEE Wireless Communications and Networking Conference, pp. 13-17,
March 2005.

[14] J. Zhang, K. Zhu, H. Zang, and B. Mukherjee. A New Provisioning
Framework to Provide Availability-guaranteed Service in WDM Mesh
Networks. Proc. IEEE International Conference on Communications
(ICC ’03), May 2003, pp. 1484-1488.

[15] K. Zhu, H. Zang, and B. Mukherjee. A Comprehensive Study on
Next-generation Optical Grooming Switches. IEEE J. Selected Areas
Commun., vol. 21, no. 7, pp. 1173-1186, Sep. 2003.

[16] http://www.darpa.mil/sto/solicitations/CORONET/pip.htm

