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Abstract

We present new results for the Stochastic Shortest Path problem when an unlimited number
of hops may be used. Nodes and links in the network may be congested or uncongested, and
their states change over time. The goal is to adaptively choose the next node to visit such
that the expected cost to the destination is minimized. Since the state of a node may change,
having the option to revisit a node can improve the expected cost. Therefore, the option to
use an unbounded number of hops may be required to achieve the minimum expected cost. We
show that when revisits are prohibited, the optimal routing problem is np-hard. We also prove
properties about networks for which continual improvement may occur.

We study the related routing problem which asks whether it is possible to determine the
optimal next node based on the current node and state, when an unlimited number of hops is
allowed. We show that as the number of hops increases, this problem may not converge to a
solution.
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1. Introduction

The deterministic Shortest Path Problem is a fundamental problem in computer science. It has
been extensively studied and applied in many fields. An interesting version of the problem deals
with a stochastic setting in which link costs are not known in advance. This problem has recently
received much attention and various versions of the problem have been studied [3,4,6–10].

In the stochastic network setting we study, the state of a node is dependent on the states of nearby
nodes. The cost of a link depends on the state of its start node. Such a setting was also studied
in [4]. The state of a node may change over time and cannot be determined until the node is reached.
Therefore, there is uncertainty with both node and link states. To find the cheapest path in such a
setting an adaptive routing decision must be made, step-by-step, as the graph is traversed from the
source node to the destination node. At each step, the optimal decision for the next step is based
on the current position and state, and the knowledge we have about the rest of the graph.
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This stochastic shortest path (SSP) problem can be applied to many practical settings, such
as transportation networks and communication networks. In transportation networks, an accident
or natural disaster can cause congestion which will increase travel time. These events often affect
a group of nodes and links in a region of the network, rather than just one node. Similarly, for
many communication networks, hardware failures may occur arbitrarily and lead to congestion in
the network. If the service level of a link or node is affected by some random event, it is likely that
nearby links or nodes will also be affected.

In this paper, we study the stochastic shortest path problem described above. The authors of [4]
studied this problem with the goal of minimizing the expected cost of arriving at the destination
from a source. They proposed an iterative solution to solve this problem using a limit on the number
of hops. We extend their work in several ways. In [4], it is assumed that the hop limit is n − 1,
where n is the number of nodes in the graph. We consider increasing the hop limit to n or more.
We prove that for some networks, the option to use n or more hops may improve the expected
cost. In these settings, the option to use an infinite number of hops may actually be more beneficial
than a finite hop limit. We also prove that the version of the problem that prohibits revisiting a
node is np-hard. We therefore focus on the version where revisiting a node is allowed. Although the
optimal solution may then use a large number of hops, it is a practical setting that arises in many
communication networks. For example, an adaptive routing approach known as deflection routing,
is used in some communication networks in which multiple processors send data packets to multiple
destinations [1,2,5,11,12]. Contention for communication link access may arise, and is resolved by
intentionally deflecting packets. Although this approach may cause some packets to be routed along
longer paths, it is useful since little or buffering is required at nodes.

We also study the related routing problem. Given the stochastic network model described above
and an unlimited number of hops, this problem asks whether for every step, it is possible to deter-
mine which node to visit next to minimize the remaining expected cost. We find that although the
optimization problem converges to a solution [4], this decision problem does not.

This paper is organized as follows. In Sec. 2 we discuss previously studied versions of SSP. In
Sec. 3 we discuss our version of the SSP problem. In Sec. 4-5 we present our theoretical results.
Finally, Sec. 6 provides a summary of our work.

2. Related Work

The problem of finding an optimal path in a stochastic network has been studied extensively and
various versions of the problem have been considered. In [4], the authors considered a stochastic
network in which the cost of links represent travel times. They studied the problem of defining a
sequence of nodes to visit such that the minimum expected travel time is achieved. They proposed
a dynamic programming solution to find the minimum expected travel time from a source to a
destination when the length of the path is limited to a maximum number of hops. In [10], the
authors study a network setting in which the state of each link is dependent on the predecessor link,
and is independent of the states of nodes. They developed heuristics to define the sequence of links
to traverse such that the expected cost is minimized. Minimizing expected cost is also studied in [9].
In this work, the states of links (congested or uncongested) are random, rather than based on a
conditional probability. Also, a probability distribution on the duration of congestion is known for
every congested link. The authors of [3] considered a different goal. Given a specific deadline, they
studied the problem of finding a sequence of choices for the next node that maximizes the probability
of arriving on time. In their setting, link travel times are based on probability density functions.
They formulate the problem as a system of nonlinear equations, and use approximation schemes to
find a good solution. In [8], the authors also consider maximizing the probability of arriving on time.
However, in their network model, link travel times are independent random variables drawn from
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known distributions. In [7], the authors considered a similar setting. The goal of their problem was to
achieve the minimum expected travel time and to determine the optimal time to start traveling. The
work in [6] considered a setting in which link travel times were dependent on the time of day. They
proposed heuristics to estimate the mean and variance of the arrival time for a given destination
node.

3. Stochastic Cheapest Cost

In this work, we are interested in a network setting similar to the one studied in [4]. The network
consists of nodes and directed links. Each node can be in two possible states: congested or un-
congested (generalizing this assumption to a larger state space is straightforward). The probability
that a node is congested is a conditional probability which is based on the states of adjacent nodes.
Links in the network are also either congested or uncongested. If we are at a congested node, any
outgoing link we traverse will also be in the congested state. Similarly, if we are at an uncongested
node, any outgoing link we traverse will be in the uncongested state (see Fig. 1).

(a)Node i is congested. (b)Node i is uncongested.

Fig. 1. Traversing a graph for the SSP problem. (a) Since i is congested, link (i, j) costs tc(i, j). (b) Since i is

uncongested, link (i, j) costs tu(i, j). In either case, when we arrive at j, if j is congested we visit the node which

minimizes dc(j). If j is uncongested, we visit the node which minimizes du(j).

Given this network model, the authors of [4] studied the problem of defining a sequence of nodes
to visit that minimizes the expected cost to arrive at the destination node from the source node. We
refer to this problem as Stochastic Shortest Path(SSP) and now give a formal definition.

3.1. Problem Statement

The input is a graph G = (V,E), a source node s, and a destination node d. Every pair of adjacent
nodes has associated to it a conditional probability. So, for a pair of adjacent nodes i and j, Pc(j, i)
is the probability that node j is congested given that node i is congested. Therefore, if i is congested,
then j is uncongested with probability 1− Pc(j, i). Similarly, Pu(j, i) is the probability that node j
is uncongested given that node i is uncongested. Every link (i, j) ∈ E is associated with two costs:
tc(i, j) denotes the congested cost of link (i, j) and tu(i, j) denotes the uncongested cost of link
(i, j). For every link (i, j), tc(i, j) ≥ tu(i, j). Given such a network, the goal of the SSP problem is,
starting at s, to adaptively determine the next node to visit that minimizes the remaining expected
cost to reach d. Since the states of nodes can change, we cannot determine the optimal path a priori.
Instead, once we arrive at a node, we must make an adaptive routing decision for the next node to
visit.

For example, in Fig. 1(a), since i is congested, traversing link (i, j) will cost tc(i, j), and in Fig. 1(b),
since i is uncongested, traversing (i, j) will cost tu(i, j). In either case, once we are at node j, if j is
congested, then traversing any link from j will cost the congested cost of the link. If j is uncongested,
then traversing any link from j will cost the uncongested cost of the link. Once we arrive at j, we
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find the optimal next node to visit as we did for node i. In [4], the expected costs are expressed as
follows:

dc(i) = min{tc(i, j) + Pc(j, i) ∗ dc(j) + (1− Pc(j, i)) ∗ du(j)} ∀i (i 6= j) (1)

du(i) = min{tu(i, j) + Pu(j, i) ∗ du(j) + (1− Pu(j, i)) ∗ dc(j)} ∀i (i 6= j) (2)

where dc(i) is the lowest expected cost from congested node i to destination node d, and du(i) is the
lowest expected cost from uncongested node i to destination node d. The authors of [4] proposed
a dynamic programming approach to solve equations(1) and(2). They also proved the existence
and uniqueness of the solution obtained with their approach. Let dkc (i) be the lowest expected cost
from congested node i to the destination node d with at most k hops, and let dku(i) be the lowest
expected cost from uncongested node i to the destination node d with at most k hops. The following
recurrences are presented in [4]:

dkc (i) = min{tc(i, j) + Pc(j, i) ∗ dk−1c (j) + (1− Pc(j, i)) ∗ dk−1u (j)} ∀i (i 6= j) (3)

dku(i) = min{tu(i, j) + Pu(j, i) ∗ dk−1u (j) + (1− Pu(j, i)) ∗ dk−1c (j)} ∀i (i 6= j) (4)

Since k is an upper limit on the hop count, the expected cost never increases as k grows larger.
The authors of [4] also show that as k grows infinitely large, the dkc (i) and dku(i) values converge.
This implies that as the hop limit increases, the improvement gained decreases.

Although in the worst case, an infinite number of hops may be required to converge to the true
solution, for simplicity, the authors assume that k ≤ n − 1, where n is the number of nodes in G.
Since in many realistic network settings, it may be beneficial to allow path lengths longer than n−1,
we study the effects of increasing k above n − 1. When k > n − 1, we know that at least one node
has been revisited in the graph. The option to revisit nodes may continuously improve the expected
cost. In Sec 4.2 we prove properties about networks for which this continual improvement is possible.

3.2. Routing Problem

Using the dynamic programming equations in(3) and(4), for a destination d and some hop limit k,
we can determine the optimal next node to visit from each node i, in the congested or uncongested
state, using at most k hops. We refer to these values as next-node values. For congested node i,
we denote the next node value for i using at most k hops as Nk

c (i). For example, from node s
in the congested state, the next optimal node to visit using at most 10 hops may be node a. We
would denote this as N10

c (s) = a. Maintaining these next node values would be a straightforward
implementation: as we solve the dynamic programming recurrences in(3) and(4), we would keep
track of the node j that minimizes dkc (i) and dku(i), respectively.

In some communication networks, contention among data packets for link access is resolved by
intentionally deflecting the packets [1,2,5,11,12]. This approach, known as deflection routing, is
effective when buffers for storing packets are unavailable. To avoid packet loss, the packets are kept
moving along the network regardless of the path lengths. For such networks, it may be useful to
determine the next node values given an unlimited number of hops. We refer to this problem as
the Routing Problem. Given a destination d, and an unlimited number of hops, the routing decision
problem is: given a node i and the state of i, find the optimal next node to visit such that the
expected cost from i to d is minimized. In Sec. 3.2 we prove that this problem does not always
converge to a solution. In other words, as k grows, the next node values endlessly fluctuate.
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Fig. 2. Example of Continual Improvement. Assume that all conditional probabilities are .5, the congested link from

s to d has cost 100, the uncongested link from s to d has cost 1, and all other congested and uncongested links have

cost 1. The source is s, which is initially congested, and the destination is d. With k = 1, we have d1c(s) = 100. By
traversing the cycle s-a-b-f-s once, we have d5c(s) = 4 + .5∗1 + .5∗50 = 54.5. With the option to visit s again, if it

remains congested after 5 hops, we have d9c(s) = 31.75. The option to continuously revisit s, if s remains congested,
will further improve the expected cost.

4. Effects of Revisiting Nodes

Figure 2 shows an example of a network for which the option to repeatedly revisit a node may
continuously improve the expected cost. Note that, in the figure, if s is ever uncongested, the optimal
next step is to visit d. However, while s is congested, the optimal choice is to traverse path s-a-b-f
and return to s (with the hope that it is now uncongested). Therefore having the option to revisit s
will continuously improve the expected cost. We refer to this process of continuously improving the
expected cost by revisiting nodes as continual improvement.

For networks in which continual improvement is possible, long paths may be required to achieve
an expected cost that is close to optimal. We refer to the version of the SSP problem for which
revisiting a node is prohibited as Stochastic Shortest Path with No Revisiting(SSP-NR). Unfortu-
nately SSPNR is np-hard (see Sec. 4.1). Therefore we are interested in determining when continual
improvement may occur in a network and how much improvement can be gained.

4.1. Hardness of No Revisits

Theorem 4.1 Stochastic Shortest Path with No Revisiting(SSP-NR) is np-hard.
Proof We prove this by reduction from the Hamiltonian Path problem. Let G = (V,E), be an
instance of directed Hamiltonian Path, where n = |V |. We construct a corresponding instance
G′ = (V ′, E′) of SSP-NR as follows (see Fig. 3):
• V ′ = V ∪ s ∪ d
• E′ = E ∪ (s, i) ∪ (i, d) for every node i ∈ V
• For every edge (i, j) ∈ G, tc(i, j) = 0 and tu(i, j) = 0 in G′

• For every edge (s, i) in G′, tc(s, i) = 0 and tu(s, i) = 0
• For every edge (i, d) in G′, tc(i, d) = 1 and tu(i, d) = 0
• For every pair of adjacent nodes i, j in G′, Pc(j, i) = Pu(j, i) = .5
• Initially, s in G′ is congested

The claim is that G has a Hamiltonian path if and only if the expected cost from s to d in G′ is
(.5)n.

For this input, in any optimal solution for SSP-NR, we will start at s and visit non-visited nodes
v1, v2, . . . , vr (where vr has no arcs to unvisited nodes), such that if vi is congested, then we will
visit vi+1, and if vi is uncongested, then we will visit d. The expected cost of such a solution will be
.5r. If r = n, then there must be a Hamiltonian Path in G; otherwise, if r < n, then no Hamiltonian
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Fig. 3. Reduction from Hamiltonian Path to SSP-NR. Graph G (on the left) is an instance of Hamiltonian Path.
Graph G′ (on the right) is an instance of SSP-NR. G′ has two additional nodes, s and d. The newly added edges

in G′ are indicated by dashed lines. Edges which were in G have congested cost=0 and uncongested cost=0 in G′.
The newly added edges directed from s have have congested cost=0 and uncongested cost=0. The newly added edges
directed to d have congested cost=1 and uncongested cost=0. Since there is a Hamiltonian path in G (a-b-c-e-f ), the

expected cost from s to d in G′ is .55.

Fig. 4. Tree Tv,k.

path exists in G.

4.2. Networks with Continual Improvement

Since SSP-NR is np-hard, we consider the efficiently solvable version of the problem for which
nodes may be revisited. However, as we showed in Fig. 2, with continual improvement an infinite
number of potential hops may be required to achieve the optimal expected cost. To solve SSP when
continual improvement may occur, it may be necessary to limit the number of hops we use. Therefore
knowledge about when continual improvement occurs is useful. We now prove that if for some s-d
pair, the expected cost achieved using at most 4n hops is less than the expected cost using at most
2n hops, then continual improvement will occur. For this proof, we use the following notion of a Tree
of Paths.
Definition Tree of Paths: Given a destination d, we can construct a binary tree of paths, Tv,k, for
a node v, and for all positive integers k. Tv,k has v as its root and d at all its leaves (see Fig. 4).
Tv,k is built as follows: We start at the root node v. Let a = Nk

c (v) and b = Nk
u (v), then in Tv,k,

the children of v will be a and b. Similarly, let x = Nk−1
c (a) and y = Nk−1

u (a). Then in Tv,k, the
children of a will be x and y. Every path in Tv,k is the optimal sequence of nodes to visit from v,
given the states of the nodes and using at most k hops.
Proposition 4.2 For k′ > k, if dk

′

c (v) < dkc (v), then there is at least one path in Tv,k′ with length
`, such that k′ ≥ ` ≥ k + 1.
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Fig. 5. A path P in Ti,2(m+1)n that visits v twice in the same state.

Proof This proof also applies to the case for dk
′

u (v) < dku(v). To achieve an expected cost less than
dkc (v), in Tv,k′ there must be some path with length more than k hops, otherwise Tv,k′ would be

equivalent to Tv,k. Therefore, if dk
′

c (v) < dkc (v), then there must be a path, P , in Tv,k′ such that
|P | ≥ k + 1.
Theorem 4.3 If for some node i, d4nc (i) < d2nc (i), then ∀ h ≥ 1,

d
2(h+1)n
c (i) < d2hnc (i).

Proof This proof also applies to the case for d4nu (i) < d2nu (i). The proof is by induction on h.

Base Case: For h = 1, we have d4nc (i) < d2nc (i), which is true by definition from the proof statement.

Inductive Hypothesis: For some m ≥ 1, we assume:

d2(m+1)n
c (i) < d2mnc (i)

Inductive Step: We will show that d
2(m+2)n
c (i) < d

2(m+1)n
c (i). From the inductive hypothesis and

Prop. 4.2, we know that in Ti,2(m+1)n, there must be a path P such that |P | > 2mn ≥ 2n + 1.
Therefore, on P , there must be some node v that was visited at least 3 times, and for at least 2 of
the 3 visits, v must have been in the same state. We denote the last 2 visits made to v in the same
state as v1 and v2, respectively. Let q1 be the subpath that starts at v1 and ends at v2, and let q2
be the subpath that starts at v2 and ends at d (see Fig. 5). Every node along q1 is associated with
a state, so with n nodes, there are at most 2n node-state pairs that we can traverse on q1.

At some node, the sequence of node-state pairs visited along q1 must differ from the sequence
visited along q2, since d 6∈ q1. Let x and y denote the first nodes that differ in q1 and q2, respectively.
Let w denote the node directly before x in q1, and directly before y in q2. Without loss of generality,
we can assume that w is in the congested state. We denote the visits made to w in q1 and q2 as w1

and w2, respectively (see Fig. 5). Let r+δ and r, where δ ≤ 2n, denote the number of hops remaining
when we reach w1 and w2, respectively. We know that dr+δc (w) < drc(w) because if dr+δc (w) = drc(w)
then Nr+δ

c (w) = Nr
c (w) 1 , and from w1 we would have gone directly to y instead of x. Therefore

the additional δ hops at w1 allowed us to achieve a lower expected cost.

We will now show that d
2(m+2)n
c (i) < d

2(m+1)n
c (i). The option of using an additional 2n hops will

allow a total of at most 2(m + 2)n hops, so the new tree is Ti,2(m+2)n. Let P̂ denote the prefix of

P in Ti,2(m+1)n leading to w2. Then either: (1) P̂ does not exist in Ti,2(m+2)n, but instead there is

1 If two or more choices for the next node yield the minimum expected cost, we break ties by choosing the node that
can achieve this minimum cost using the fewest hops.
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Fig. 6. Example for which the routing decision problem does not stabilize. Link costs (congested followed by uncon-

gested) are shown next to each link.

a different path P̂ ′ that begins with a prefix of P̂ , or (2) P̂ exists in Ti,2(m+2)n. If (1) occurs, then

(see Fig. 5) there must be some nodes f, g, g′, such that P̂ and P̂ ′ are identical up to f , but in P̂

we visit g directly after f , while in P̂ ′ we visit g′ directly after f . Since from f we chose to visit g′

instead of g, it must be because this choice improves the expected cost in P̂ ′ due to now allowing

additional hops from f . Therefore, d
2(m+2)n
c (i) < d

2(m+1)n
c (i). If (2) occurs, then when we arrive at

w2 in Ti,2(m+2)n we will have δ′ ≥ r + δ hops remaining. If from w2 visiting some node z achieves a
lower expected cost than visiting x, we will visit z; otherwise, we will visit x. In either case, we will
improve the expected cost. Since dδ

′

c (w) ≤ dr+δc (w) < drc(w), the expected cost for Ti,2(m+2)n will be

lower than the expected cost for Ti,2(m+1)n, so d
2(m+2)n
c (i) < d

2(m+1)n
c (i).

5. Routing Problem Does Not Stabilize

As stated in Sec. 3, the authors of [4] show that for an unlimited number of hops, the SSP problem
stabilizes. In other words, as k approaches infinity, dkc (i) (and dku(i)) converges to a limit. In this
section, we show that although the SSP problem stabilizes, the Routing Problem does not.
Theorem 5.1 As k →∞ Nk

c (i) (and Nk
u (i)) does not always converge.

Proof We prove this with an example network shown in Fig. 6. The costs of links (congested followed
by uncongested) are shown in the figure. Assume that Pc(a, s) = Pc(b, a) = Pc(f, s) = Pc(h, f) =
Pc(g, h) = 1, Pc(a, b) = .5, and Pc(f, g) = 1

3 . The source s is initially congested, and the destination
is d. We now show that for this network, as k →∞, Nk

c (s) fluctuates between nodes a and f . Since
d7c(a) = d7c(f) = 5, if 8 hops are allowed, then visiting a or f from s are equally good choices, so
N8
c (s) = a or N8

c (s) = f . Now, if we increase the number of hops by 2, then traversing the cycle
a-b-a will improve the expected cost. If we increase the number of hops by 3, then traversing the
cycle f-h-g-f will further improve the expected cost. So with a total of 10, 12, 14, 16, . . . hops, the
optimal next node to visit from s is a. With a total of 11, 14, 17, 20, . . . hops, the optimal node to
visit from s is f . More specifically, if k − 2 is divisible by 6, then by using at most k hops, a and f
are equally good choices for the next node to visit. Otherwise, when k is even, Nk

c (s) = a, and when
k − 2 is divisible by 3, Nk

c (s) = f . Therefore, if we continuously increase k by one hop, N8
c (s) will

fluctuate between a and f .
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6. Conclusion

We study the problem of minimizing expected cost in a stochastic network. Whereas previous
researchers limited the number of hops that can be used [4], we show that by using more hops to
revisit nodes, it is possible to continuously improve the expected cost. We also prove that restricting
this problem so that nodes may not be revisited is np-hard. We therefore focus on networks for
which continual improvement may occur and prove properties of these networks. Specifically, for an
n node graph, we find that if for some source-destination pair, the expected cost achieved using at
most 4n hops is less than the expected cost using at most 2n hops, then continual improvement will
occur.

We also study the problem of determining, for every node, the optimal next node to visit to
minimize the remaining expected cost. We prove that although the problem of minimizing expected
cost stabilizes [4], this routing problem does not.
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